ERRATUM

Pair Spectra and the Magnetic Properties of Co^{2+} in Double Nitrate Crystals, J. W. Culvahouse and David P. Schinke [Phys. Rev. 187, 671 (1969)]. In Sec. VC, there are several misprints and some numerical errors. The seventh entry of Table VI should be b_M/R . In the text preceding Eq. (73), the direction of the spins along the c axis of the antiferromagnetic unit cell should be t t t t t t rather than the sequence given which is the orientation of successive layers. In Eq. (73), the factor $\frac{1}{3}$ should be $\frac{1}{12}$, but the numerical values on the far right-hand side are correct. In Eq. (75), the factor $\frac{1}{3}$ should be $\frac{1}{6}$. Finally, a numerical error and an omitted term have been found in the calculation of the effects of the transverse components of the spin-spin interaction, and a numerical error has been found in the calculation of the dipolar interaction energy. The correct numerical values for the two models are as follows:

Ferrimagnetic: $E_{\text{tot}}^{(2)} = 0.0068R$, $E_{\text{tot}}^{(L)} = -0.0082R$.

Antiferromagnetic: $E_{\text{tot}}^{(2)} = 0.0089R$, $E_{\text{tot}}^{(L)} = -0.0010R$.

The changes are slight but significant. For a single domain of spherical shape, the ordering energy for the antiferromagnetic and ferrimagnetic models are 0.147R and 0.153R. The agreement of the ordering energy of either model with the measurement of Mess is not significantly altered; but the ferrimagnetic arrangement is favored slightly even without domain formation. The energy difference for the two models is significant and strongly suggests a more complex ordering pattern which reduces the dipolar energy so that an antiferromagnetic state is lowest. If $J_{00}(X,X)$ were of the opposite sign our antiferromagnetic model would be lowest in energy; but our experimental data exclude this possibility.